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Tunable super- and subradiant boundary states
in one-dimensional atomic arrays
Anwei Zhang1, Luojia Wang1, Xianfeng Chen1,2, Vladislav V. Yakovlev3 & Luqi Yuan 1*

Efficient manipulation of quantum states is a key step towards applications in quantum

information, quantum metrology, and nonlinear optics. Recently, atomic arrays have been

shown to be a promising system for exploring topological quantum optics and robust control

of quantum states, where the inherent nonlinearity is included through long-range hoppings.

Here we show that a one-dimensional atomic array in a periodic magnetic field exhibits

characteristic properties associated with an effective two-dimensional Hofstadter-butterfly-

like model. Our work points out super- and sub-radiant topological edge states localized at

the boundaries of the atomic array despite featuring long-range interactions, and opens an

avenue of exploring an interacting quantum optical platform with synthetic dimensions.
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Atomic arrays refer to an ensemble of atoms where the
interaction of atoms and photons takes place1. The light-
atom coupling in atomic arrays exhibits fundamental

physical phenomena, including facilitating the long-range
coherent interactions and promoting the collective radiative
loss2. Recent advances in assembling highly ordered one-
dimensional (1D) and two-dimensional (2D) atomic arrays pro-
vide unique platforms for exploring the light-matter interaction
in quantum optics3–5. The interference in the emitted optical field
leads to remarkable optical properties such as the subradiant
state6–9, a high reflection of radiation10–12, the efficient storage
and retrieval for quantum memory13, and topologically-protected
edge states14,15, which show important applications toward
quantum information processing, quantum metrology, and
nonlinear optics16,17.

Topological physics is of fundamental importance where
physical characteristics are robust against microscopic variation
of system details18–20. Related phenomena can be explored by
engineering the Hamiltonian of an atomic or optical system21–23.
Such approach shows a great potential toward quantum simula-
tion of topological matter. In particular, atomic or optical systems
provide a novel fundamental way of manipulating quantum states
of the light, such as robust photon transport in photonic sys-
tems24–27 and non-reciprocal transport in hot atomic gas28,29.
Recently, it has been shown that atomic arrays hold a promise for
studying topological quantum optics, where the inherent non-
linearity brings a natural way to explore the physics including
long-range hoppings14,15,30–32.

Robust single-photon super- and subradiant states hold a sig-
nificant promise for applications related to quantum storage and
quantum information. In this paper, we investigate 1D atomic
arrays subjected to a spatially periodic magnetic field. The spatial
phase of the magnetic field is an external parameter, and can be
used to map one momentum dimension in a 2D topological
system33,34. Therefore, 1D atomic arrays with the synthetic
momentum dimension manifests important optical features
associated with 2D systems. Systems with synthetic dimensions
simplify experimental design and enable capabilities of manip-
ulating atomic quantum states or photons along the synthetic
dimension33–38. By changing the periodicity of the magnetic field,
we show that the 1D atomic arrays exhibit a butterfly-like spec-
trum, which has not been discussed in the 2D atomic arrays
under a uniform magnetic field14,30. Such spectrum, associated
with the open quantum optical system involving long-range
hoppings along the synthetic dimension, exhibits features which
are dramatically distinct from the spectrum in the 1D photonic
model39–41. For a finite 1D atomic array, the system supports
pairs of topological boundary states with opposite circular
polarizations, exhibiting super- or subradiance dependent on the
magnetic field distribution and atomic excitation frequency,
which is found to be persevering with the small disorder involved
in simulations. The subradiant state localized at the boundary of
atomic arrays provides a potential application toward robust
quantum storage against small perturbations. The results dis-
cussed here show a route toward the possibility of exploring long-
range interacting topological physics in quantum optical system
with synthetic dimension.

Results
Formalisms. We propose the experimental arrangement con-
sisting of a 1D array of N atoms which are aligned along the y
direction with the spacing a. Each atom (labeled by n and located
at yn) has a V-type internal level structure with the ground state
gn
�
�

�
and excited states ± nj i ¼ �ð xnj i± i yn

�
�

�Þ= ffiffiffi
2

p
, where the

transition between gn
�
�

�
and ± nj i is coupled with the right (left)

circularly polarized light. Here xðyÞj i refers to the state polarized
along the xðyÞ direction. The degeneracy of the excited states is
broken by the presence of an external magnetic field Bn � BðynÞ
along the z axis (see Fig. 1a).

We consider the dynamics of single-excited atoms coupled to
free-space modes of the radiation field. After integrating out
radiation modes under the dipole approximation, one obtains the
non-Hermitian effective Hamiltonian12,14,30

H ¼
XN

n

X

α¼±

ω0 � i
γ0
2
þ sgnðαÞμBn

� �
αnj i αnh j

þ 3πγ0
k0

XN

n≠m

X

α;β¼±

Gαβðyn � ymÞ αnj i βm
� �

�;

ð1Þ

where ω0 ¼ k0c ¼ 2πc=λ is the atomic transition frequency with
the wave vector k0 and the wavelength λ, γ0 is the atomic decay
rate in the free space, sgnð± Þ � ± , and μBn gives the Zeeman
shift for the nth atom with the magnetic moment μ. Gαβðyn � ymÞ
is the free-space dyadic Green’s function describing the electric
field at yn emitted by the atom located at ym. By using the Green’s

Fig. 1 Schematic of a 1D atomic array in a periodic magnetic field. a The
atomic array subjected to the external magnetic field Bn, where each atom
has a V-type atomic level structure with non-degeneracy excited states
± nj i split by the magnetic field. b The equivalent tight-binding lattice model
with on-site potentials ± Bn and photon-mediated long-range hoppings.
Black solid, red dotted and blue dashed lines label the nearest-neighbor,
next-nearest-neighbor and triatomic spacing hoppings, respectively,
indicating dipole–dipole interactions and collective dissipations.
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function in Cartesian basis7,30,31,42, one has

G± ± ¼ Gxx þ Gyy

2
¼ � eik0r

8πk20r
3
ðk20r2 � ik0r þ 1Þ;

G±� ¼ Gyy � Gxx

2
¼ eik0r

8πk20r
3
ðk20r2 þ 3ik0r � 3Þ;

ð2Þ

where r ¼ jyn � ymj.
The atomic system under investigation is an effective tight-

binding lattice model (see Fig. 1b). The photon-mediated long-
range hoppings amplitude is described by coefficients in the last
term of the Hamiltonian, where the real part describes photon-
mediated dipole–dipole interaction potential between the nth and
mth atoms, while the imaginary part denotes the collective
dissipative rate of the two atoms.

To construct the spectrum of the non-Hermitian Hamiltonian
in Eq. (1), we take the linear combination of single-excited states
ψj i ¼ P

nðCn;þ þnj i þ Cn;� �nj iÞ, where Cn;± is the amplitude of
the wave function for the nth atom with the ± polarization. The
spectrum can be calculated by using the time-independent
Schrödinger equation H ψj i ¼ E ψj i, which leads to

ECn;þ ¼ 3πγ0
k0

X

l≠0

½GþþðlaÞCnþl;þ þ Gþ�ðlaÞCnþl;��

þ ω0 � i
γ0
2
þ μBn

� �
Cn;þ;

ECn;� ¼ 3πγ0
k0

X

l≠0

½G�þðlaÞCnþl;þ þ G��ðlaÞCnþl;��

þ ω0 � i
γ0
2
� μBn

� �
Cn;�;

ð3Þ

where l is a non-zero integer. E � ω� iγ=2 is the complex
eigenvalue, in which ω denotes the self-energy of the collective
atomic excitation and γ is the collective decay rate of the system.

We consider a spatially periodic magnetic field

Bn ¼ BðynÞ ¼ B0 cosð2πbnþ ϕÞ; ð4Þ
where B0 is the field amplitude, the parameter b controls the
periodicity of the magnetic field, and ϕ is the modulation phase.
By applying the magnetic field with different spatial shapes along
the y direction, one has the control of parameters b and ϕ. Here ϕ
provides an additional degree of freedom to our system serving
the purpose of the synthetic dimension, so the system can be
explored by exploiting the parameter-dependency of the
Hamiltonian33,34. In such a synthetic space, b gives the effective
magnetic flux while ϕ denotes a synthetic momentum
dimension40,43. Hence we can study the physics associated with
an open 2D system with long-range couplings under the effective
magnetic flux.

Spectra of the non-Hermitian Hamiltonian. We plot the spec-
trum projected over the synthetic momentum dimension ϕ while
varying b in Fig. 2. The parameters are a ¼ 0:1λ and
μB0 ¼ 10γ0

14, and spectrum is computed by following the
method by Hofstadter44 for the atomic array with N ¼ 150 under
a periodic boundary condition and also choosing b as rational
numbers from 0 to 1. Hoppings in Eq. (2) are long-range but
decay as 1=r, we then make truncation in the calculation to get rid
of the divergence in the spectrum. One can see the resulting
butterfly-like spectrum (ω), which exhibits multiple bulk bands
and gaps for each b. As compared with the original Hofstadter-
butterfly bandstructure44 and also the butterfly-like spectrum in
the 1D photonic model39, the spectrum in Fig. 2 shows the open
and close of the bandgap with the difference in subtleties while b
is varying even with the presentence of the long-range non-
Hermitian couplings in the atomic arrays.

Fig. 2 The numerically calculated spectrum. The spectrum ω is projected
over the synthetic momentum dimension ϕ, which is the modulation phase,
versus the parameter b in the external magnetic field with the spacing
a ¼ 0:1λ and the magnetic field amplitude μB0 ¼ 10γ0. ω0 denotes the
atomic transition frequency and γ0 denotes the atomic decay rate in the
free space. Red line corresponds to b ¼ ffiffiffi

5
p

=10.

Fig. 3 The spectrum with b ¼ ffiffiffi
5

p
=10. a The spectrum ω as a function of

the modulation phase ϕ under open boundary condition for an atomic array
with the atomic number N ¼ 101 and the spacing a ¼ 0:1λ. The applied
external magnetic field has parameters μB0 ¼ 10γ0 and b ¼ ffiffiffi

5
p

=10. A1, A2,
A3, A4 and B1, B2, B3, B4 label a variety of boundary states with ðω�
ω0Þ=γ0 ¼ 8:15 and �7:21, respectively, at different ϕ. b, c The zoom-in
spectra, showing the details of boundary states. The color of the spectrum
gives the collective decay rate γ. ω0 denotes the atomic transition
frequency and γ0 denotes the atomic decay rate in the free space.
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The parameter b can be externally adjusted by controlling the
magnetic field. Once it is irrational, the effective magnetic flux is
incommensurate with the lattice and the system exhibits a
quasicrystal structure40. We set b ¼ ffiffiffi

5
p

=10, indicated by the red
line in Fig. 2. In Fig. 3a, the spectrum of the lattice is plotted
under an open boundary condition with N ¼ 101 against the
modulation phase ϕ in the external magnetic field. As a
consequence of the presence of the magnetic field which breaks
the time-reversal symmetry of the system, one can see that there
is a fractal set of band gaps, and, inside each gap, it exhibits pairs
of topological boundary states. Moreover, the striking character-
istic of this structure is that the collective decay rate (γ) is
changing for different ω and ϕ, covering the range from 0 to
�7:5γ0. The destructive interference in the atom–photon
interaction leads to suppressed radiative loss for certain states,
corresponding to subradiant states with decay rate below the
single-atom emission rate γ0. In particular, the collective decay
rates γ for boundary states in two larger gaps show different
physical features. The boundary states inside the upper gap has γ
> γ0, corresponding to superradiant modes with enhanced
collective emission, while the boundary states inside the lower
gap are subradiant because γ is smaller than γ0. Moreover, the
collective decay rate is also changing along each boundary state
when one varies the parameter ϕ, as shown in Fig. 3b, c. In
particular, for the subradiant boundary states in the lower gap, as
indicated in Fig. 3c, γ changes from �0:6γ0 to �0:1γ0, showing a
significant suppression of the spontaneous emission. Further-
more, the lifetimes of boundary states are influenced by the
choice of the parameter b. For instance, for the case
b ¼ ð ffiffiffi

3
p � 1Þ=2, the boundary states inside the two large gaps

are both subradiant (see Supplementary Note 1).
The aforementioned boundary states are localized on the left or

right boundary of the lattice with a combination of þj i and �j i

excited states. As an example, in Fig. 4, we plot the intensity
distributions of boundary states from the eigenfunction analysis
versus the position of the atom n for ±j i excited states labeled by
A2 and B2 in Fig. 3a, which correspond to superradiant and
subradiant states, respectively. The superradiant boundary state
A2 is located mainly at the �j i excited state on the leftmost atom,
while a small portion of the intensity is distributed at þj i on
other atoms near the left boundary due to the hoppings between
the two excited states on different atoms. We denote the
boundary state A2 by L� then. Similarly, the subradiant
boundary state B2 is located mainly at the þj i excited state on
the leftmost boundary, and hence is labeled by Lþ. The two
boundary states corresponding to the same ϕ but different
excitation frequency, so one can selectively excite either the
superradiant or subradiant boundary states for a given external
magnetic field.

Other boundary states labeled by A1, A3, A4 in the upper gap
and B1, B3, B4 in the lower gap, as shown in Fig. 3a, give R�
(mainly distributed at �j i on the right boundary), Rþ (mainly
distributed at þj i on the right boundary), Lþ and Rþ, R�, L�,
respectively. One therefore can selectively prepare a super- or
subradiant state with either right or left circular polarization by a
choice of ϕ as well as the excitation frequency of the source
field, which we will demonstrate in numerical simulations. In
each gap, the boundary states located at the same boundary
with opposite polarization excitations exhibit slopes of edge states
being both either positive or negative, while the boundary states
at different boundaries support edge states having slopes with
the opposite sign.

Simulations. We further perform numerical simulations with
solving the time-dependent Schrödinger equation H ψðtÞj i ¼
id ψðtÞj i=dt, where ψðtÞj i ¼ P

nðCn;þðtÞ þnj i þ Cn;�ðtÞ �nj iÞ and

Fig. 4 The study of intensity distributions of boundary states. a, b, c, d Intensity distributions of þj i and �j i excited states on the nth atom, which
corresponds to the boundary state labeled by A2 (B2), where A2 and B2 denote ½ϕ=2π; ðω� ω0Þ=γ0� ¼ ð0:15; 8:15Þ and ð0:15;�7:21Þ, respectively. Both
boundary states are localized on the left boundary of the atomic arrays. ϕ denotes the modulation phase, ω denotes the self-energy of the collective atomic
excitation, ω0 denotes the atomic transition frequency, and γ0 denotes the atomic decay rate in the free space.
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H is defined in Eq. (1). The physical system is chosen to be the
same as that explored in Fig. 4, where n ¼ 1; ¼ ; 101,
b ¼ ffiffiffi

5
p

=10, and ϕ=2π ¼ 0:15. A gaussian-shape source field
ΩsðtÞ is applied to excite both ±j i states on the leftmost atom
with a tunable frequency detuning Δω. The Rabi frequency of
the source field is chosen to be small enough so that the exci-
tation of the system follows mainly on the collective decay from
the system rather than the Rabi oscillation. In Fig. 5a, we show

the simulated dynamics of intensity distributions jCn;þðtÞj2 and
jCn;�ðtÞj2 for n from 1 to 20, with ΩsðtÞ having the temporal
envelope in Fig. 5b and Δω=γ0 ¼ �7:21, which aims to excite
the subradiant boundary state B2 in Fig. 4. The simulation result
shows that the excitation is localized mostly on the intensity
jC1;þj2, while a small portion of the intensity is extended to

jC3;�j2. jCn;± ðtÞj2 for n> 20 is also nearly zero. Furthermore,

Fig. 5 Simulation results of intensity distributions. a Normalized intensity distributions jCn;þðtÞj2 and jCn;�ðtÞj2 on the nth atom versus the time t, where
the source field is applied on the leftmost atom, having the frequency detuning Δω=γ0 ¼ �7:21 with the temporal envelope ΩsðtÞ in b. γ0 denotes the
atomic decay rate in the free space. b Evolutions of jC1;þðtÞj2 and jC3;�ðtÞj2 under a fitting with I0 ¼ jC1;þðγ0t ¼ 9Þj2, respectively. c jCn;þðtÞj2 and jCn;�ðtÞj2
versus t, where the source field has the frequency detuning Δω=γ0 ¼ 8:15. d Evolutions of jC1;�ðtÞj2 and jC3;þðtÞj2 under a fitting with I0 ¼ jC1;�ðγ0t ¼ 9Þj2,
respectively. e–h Simulation results similar to a–d but the location of each atom being shifted at a random number within 5% along the y-axis in the
atomic array.
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Fig. 5b shows evolutions of jC1;þðtÞj2 and jC3;�ðtÞj2. jC1;þðtÞj2 is
fitted with the decay function e�0:28γ0t from γ0t ¼ 9, when the
source field passes, so the affect from the source excitation is
mostly prevented. From the plot, one can see that the tail of
jC1;þðtÞj2 follows the decay at a collective rate 0:28γ0. Hence the
subradiant boundary state B2 demonstrated in the simulation is
consistent with the eigenfunction analysis in Fig. 4. Such
selectively prepared subradiant state localized at the boundary of
the arrays, is robust against small variations of the system. It
therefore shows a potential for the robust quantum storage,
which is of great importance for quantum device applications.

We then perform the simulation using ΩsðtÞ with
Δω=γ0 ¼ 8:15, and plot results in Figs. 5c, d. jC1;�j2 is mostly
excited, which decays at a rate �1:71γ0t in the fitting. The
simulation result shows the superradiant boundary state A2 in
Fig. 4. From this set of simulations, we show that, such super- or
subradiant boundary state is localized at the boundary of atomic
arrays. Moreover, by tuning the frequency detuning Δω of the
source field, one indeed can selectively excite the subradiant state
with the right circular polarization or the superradiant state with
the left circular polarization.

To show that the proposed system is robust against small
disorder, we perform simulations with the same atomic arrays in
Figs. 5a–d, but the location of each atom being shifted at a
random number within δ ¼ 5% along the y-axis. The corre-
sponding simulation results are plotted in Figs. 5e–h, where one
can see that the features of subradiant/superradiant boundary
state still exhibit.

The excitation of boundary states depends on the choice of Δω.
For the same system in Figs. 5a–d, we can also excite the bulk
state by choosing Δω=γ0 ¼ �10, where the intensities of the
excitation jCn;± ðtÞj2 evolve toward the middle of the atomic
array. On the other hand, further increase of disorder can destroy
the subradiant/superradiant boundary state. We find that, for
disorder with δ ¼ 20%, the features in the excitation dynamics
corresponding to subradiant/superradiant phenomena from
couplings between atoms in the entire array no longer persist
(see Supplementary Note 2). Moreover, not only pulsed source
can excite the desired boundary states, we notice that the
continuous-wave (CW) laser can also be used to prepare such
boundary states.

Discussion
The proposed system is experimentally feasible. For example, an
atomic array with the subwavelength-scale lattice spacing can be
realized by using bosonic strontium45,46. The transition between
triplet states 3P0 and 3D1 of atom 84Sr gives emission at the
wavelength λ ¼ 2:6 μm. One can use the optical lattice formed by
lasers at 412.8 nm to trap the atoms, which achieves a sub-
wavelength lattice spacing a ¼ 206:4 nm, i.e., a=λ � 0:0845.
Inhomogeneous magnetic field is widely used to produce spin-
orbit couplings in the condensed matter systems47,48. The mag-
netic field in Eq. (4) can be implemented by a variety of experi-
mental technologies which have been proposed to construct
magnetic lattices49–53. One can use either a CW or pulsed laser at
a frequency resonant with the boundary state L± (R± ) inside the
bandgap to excite the ±j i state of the atom located at the left
(right) boundary. The emission of such super- or subradiant
boundary state is localized at the boundary of atomic arrays with
the enhanced or suppressed collective decay rate.

In summary, we have investigated 1D atomic arrays subjected
to the spatially periodic magnetic field, which supports the non-
Hermitian lattice model with long-range hoppings. The phase in
the magnetic field serves as an external parameter, which gives a

synthetic momentum dimension. In atomic arrays with long-
range hoppings, the existence of topological edge states is not
generally valid15. In the open system proposed here, we consider
a synthetic space including one spatial dimension and one syn-
thetic momentum dimension. By carefully selecting parameters,
we show that this synthetic space exhibits pairs of topological
boundary states, which holds fundamentally different physics
from the 1D atomic arrays with a non-zero Zak phase31. These
boundary states are localized at the boundary of atomic arrays
and exhibit super- or subradiance with right or left circular
polarization, which can be robust against small disorder in
simulations. Our results show potential applications toward
manipulating atomic emission at the single-photon level in
atomic arrays with the concept of synthetic dimensions, which is
important for the quantum memory and quantum information,
and also leads potential implications for quantum sensors54,55

and super-resolution spectroscopy56 by using the robust single-
photon superradiant states. The study of quantum optics with
synthetic dimensions opens a route of possibly exploring topo-
logical phenomena in versatile higher-dimensional strong-inter-
acting open quantum systems in the future.

Data availability
The data that support the findings of this study are available from the corresponding
author on request.
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